Mission type | Solar research |
---|---|
Spacecraft properties | |
Launch mass | 400 kilograms (880 lb) |
Start of mission | |
Launch date | 2019-20 |
Rocket | PSLV-XL |
Launch site | Satish Dhawan Space Centre |
Contractor | ISRO |
Orbital parameters | |
Reference system | Geocentric |
Regime | Lagrangian point-1 |
Epoch | Planned |
Aditya (Sanskrit: आदित्य, lit: Sun, pronunciation ) or Aditya-L1 is a spacecraft whose mission is to study the Sun. It was conceptualised by the Advisory Committee for Space Research in January 2008. It has been designed and will be built in collaboration between Indian Space Research Organisation (ISRO) and various Indian research organizations and will be launched by ISRO around 2019-2020. This will be the first Indian space mission to study the Sun, and also the first Indian mission to be placed at Lagrangian point L1 -- far away from the Earth from where continuous solar observations are possible. Only NASA and ESA have successfully placed satellites at the L1 point as of date. An experimental budget of 3 Crore INR has been allocated it for the financial year 2016-17.
Aditya-L1 is a solar mission. It was initially envisaged as a small, Low-Earth Orbiting Satellite with a coronagraph to study the million-degree solar outer atmosphere known as the solar corona. Subsequently, the scope of the mission has been enhanced and it is now planned to be a comprehensive solar and space environment observatory to be placed at the Lagrangian point L1. This enhanced mission named Aditya-L1 has recently been approved by the Government of India.
A Satellite placed in the halo orbit around the Lagrangian point L1 of the Sun-Earth system has the major advantage of continuously viewing the Sun without any occultation/ eclipses. The Aditya-L1 mission will be inserted in a halo orbit around the L1, which is about 1.5 million km from the Earth. The satellite carries a total of seven payloads with diverse objectives, including but not limited to, the coronal heating problem, solar wind acceleration, coronal magnetometry, origin and monitoring of near-UV solar radiation (which drives Earth's upper atmospheric dynamics and global climate), coupling of the solar photosphere to chromosphere and corona, in-situ characterizations of the space environment around Earth by measuring energetic particle fluxes and magnetic fields of the solar wind and solar magnetic storms that have adverse effects on space and ground-based technologies.