In graph theory, an acyclic orientation of an undirected graph is an assignment of a direction to each edge (an orientation) that does not form any directed cycle and therefore makes it into a directed acyclic graph. Every graph has an acyclic orientation.
The chromatic number of any graph equals the length of the longest path in an acyclic orientation chosen to minimize this path length. Acyclic orientations are also related to colorings through the chromatic polynomial, which counts both acyclic orientations and colorings. The planar dual of an acyclic orientation is a totally cyclic orientation, and vice versa. The family of all acyclic orientations can be given the structure of a partial cube by making two orientations acyclic when they differ in the direction of a single edge.
Orientations of trees are always acyclic, and give rise to polytrees. Acyclic orientations of complete graphs are called transitive tournaments. The bipolar orientations are a special case of the acyclic orientations in which there is exactly one source and one sink; every transitive tournament is bipolar.
Every graph has an acyclic orientation. One way to generate an acyclic orientation is to place the vertices into a sequence, and then direct each edge from the earlier of its endpoints in the sequence to the later endpoint. The vertex sequence then becomes a topological ordering of the resulting directed acyclic graph (DAG), and every topological ordering of this DAG generates the same orientation.