*** Welcome to piglix ***

Directed cycle


In graph theory, a cycle is a path of edges and vertices wherein a vertex is reachable from itself. There are several different types of cycles, principally a closed walk and a simple cycle; also, e.g., an element of the cycle space of the graph.

A closed walk consists of a sequence of vertices starting and ending at the same vertex, with each two consecutive vertices in the sequence adjacent to each other in the graph. In a directed graph, each edge must be traversed by the walk consistently with its direction: the edge must be oriented from the earlier of two consecutive vertices to the later of the two vertices in the sequence. The choice of starting vertex is not important: traversing the same cyclic sequence of edges from different starting vertices produces the same closed walk.

A simple cycle may be defined either as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex, or as the set of edges in such a walk. The two definitions are equivalent in directed graphs, where simple cycles are also called directed cycles: the cyclic sequence of vertices and edges in a walk is completely determined by the set of edges that it uses. In undirected graphs the set of edges of a cycle can be traversed by a walk in either of two directions, giving two possible directed cycles for every undirected cycle. (For closed walks more generally, in directed or undirected graphs, the multiset of edges does not unambiguously determine the vertex ordering.) A circuit can be a closed walk allowing repetitions of vertices but not edges; however, it can also be a simple cycle, so explicit definition is recommended when it is used.

In order to maintain a consistent terminology, for the rest of this article, "cycle" means a simple cycle, except where otherwise stated.

A chordless cycle in a graph, also called a hole or an induced cycle, is a cycle such that no two vertices of the cycle are connected by an edge that does not itself belong to the cycle. An antihole is the complement of a graph hole. Chordless cycles may be used to characterize perfect graphs: by the strong perfect graph theorem, a graph is perfect if and only if none of its holes or antiholes have an odd number of vertices that is greater than three. A chordal graph, a special type of perfect graph, has no holes of any size greater than three.


...
Wikipedia

...