*** Welcome to piglix ***

2-Furoic acid

2-Furoic Acid
Furan-2-carboxylic acid 200.svg
Names
Preferred IUPAC name
Furan-2-carboxylic acid
Other names
2-Furoic acid; pyromucic acid; 2-furancarboxylic acid; α-furancarboxylic acid; α-furoic acid; 2-carboxyfuran
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.001.639
PubChem CID
Properties
C5H4O3
Molar mass 112.08 g·mol−1
Appearance White/ Off-White (Beige) Crystalline Powder
Density 0.55 g/cm3
Melting point 128 to 132 °C (262 to 270 °F; 401 to 405 K)
Boiling point 230 to 232 °C (446 to 450 °F; 503 to 505 K)
Easily soluble in cold and hot water, 27.1 g/L
Acidity (pKa) 3.12 at 25 °C
Hazards
Main hazards Irritating to eyes, respiratory system and skin.
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Related compounds
Related compounds
2-Thiophenecarboxylic acid,
3-Furoic acid, Furfuryl alcohol,
2,5-Furandicarboxylic acid,
Furfurylamine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

2-Furoic acid is a heterocyclic carboxylic acid, consisting of a five-membered aromatic ring and a carboxylic acid group. Its name is derived from the Latin word furfur, meaning bran. The salts and esters of furoic acids are known as furoates.

2-Furoic acid is an organic compound most widely found in food products as a preservative and a flavoring agent. Other uses for 2-furoic acid include nylon preparation and optic technologies.

2-Furoic acid was first described by Carl Wilhelm Scheele in 1780 as the first derivative of the compound furan. Since then, the compound's reactivity with different substances and organisms was tested. It was discovered that 2-furoic acid can be the sole source of carbon and energy for the organism Pseudomonas putida. The organism aerobically degrades the compound.

2-Furoic acid can be synthesized by the oxidation of either furfuryl alcohol or furfural. This can be achieved either chemically or biocatalytically. Currently the industrial route involves the Cannizaro reaction of furfural in an aqueous NaOH solution; this route produces both 2-furoic acid and furfuryl alcohol. The bio-catalytic route involves the microorganism Nocardia corallina. Experiments involving this microbial conversion resulted in high yields: 98% from 2-furfuryl alcohol and 88% from 2-furanaldehyde. Oxidation with N. corallina is unique because most other microorganisms produce two products from the oxidation, the acid and the alcohol. Furthermore, aromatic ring destruction does not occur.

In industrial use, 2-furoic acid is a preservative, acting as a bactericide and fungicide. It is also considered an acceptable flavoring ingredient and achieved a generally recognized as safe (GRAS) status in 1995 by the Flavor and Extract Manufacturers Association (FEMA). 2-Furoic acid is characterized as a colorless liquid and has a distinct odor described in the Encyclopedia of Food and Color Additives as sweet, oily, herbaceous, and earthy. 2-Furoic acid is often used as a starting material for the production of furoate esters. It and its derivatives also aid in the production of nylons, and are often used in biomedical research.


...
Wikipedia

...