*** Welcome to piglix ***

On-board diagnostics


On-board diagnostics (OBD) is an automotive term referring to a vehicle's self-diagnostic and reporting capability. OBD systems give the vehicle owner or repair technician access to the status of the various vehicle subsystems. The amount of diagnostic information available via OBD has varied widely since its introduction in the early 1980s versions of on-board vehicle computers. Early versions of OBD would simply illuminate a malfunction indicator light or "idiot light" if a problem was detected but would not provide any information as to the nature of the problem. Modern OBD implementations use a standardized digital communications port to provide real-time data in addition to a standardized series of diagnostic trouble codes, or DTCs, which allow one to rapidly identify and remedy malfunctions within the vehicle.

GM's ALDL (Assembly Line Diagnostic Link) is a General Motors proprietary onboard diagnostic interface that started with the late 1970s and early 1980s CLCC (Closed Loop Carburetor Control) and early GM EFI systems. There's an appearance of standardization because the diagnostic jack didn't change over the years ALDL was utilized by GM. GM North America used a proprietary 12 position Metripack 280 diagnostic jack. GM Australia Holden used a 6 position Metripack 280 diagnostic jack. The GM Europe Opel and Vauxall used a 10 position Metripack 280 diagnostic jack. ALDL was not a standard. It was actually extremely fragmented. The information exchange changed with each powertrain control module (aka PCM, ECM, ECU). A PCM integrates transmission and engine control on one Processing unit. ECM/ECU are engine control only with a separate TCM (Transmission Control Module) if needed. While ALDL is the closest thing to standard onboard diagnostics prior to 1991 ALDL was not a standard. ALDL was even fragmented within GM brands, models, and model years. Trim levels in the same model year, division, and nameplate can use different communications. Different versions presented differences in diagnostic jack pin-outs, data protocols, and data rates (this is the reason for the ″Mask″ files needed for aftermarket software communication). Earlier versions used 160 bit/s, while later versions went up to 8192 bit/s and used bi-directional communications to the PCM or ECM/TCM.


...
Wikipedia

...