*** Welcome to piglix ***

Brownian ratchet


In the philosophy of thermal and statistical physics, the Brownian ratchet or Feynman-Smoluchowski ratchet is a thought experiment about an apparent perpetual motion machine first analysed in 1912 by Polish physicist Marian Smoluchowski and popularised by American Nobel laureate physicist Richard Feynman in a physics lecture at the California Institute of Technology on May 11, 1962, during his Messenger Lectures series The Character of Physical Law in Cornell University in 1964 and in his text The Feynman Lectures on Physics as an illustration of the laws of thermodynamics. The simple machine, consisting of a tiny paddle wheel and a ratchet, appears to be an example of a Maxwell's demon, able to extract useful work from random fluctuations (heat) in a system at thermal equilibrium in violation of the second law of thermodynamics. Detailed analysis by Feynman and others showed why it cannot actually do this.

The device consists of a gear known as a ratchet that rotates freely in one direction but is prevented from rotating in the opposite direction by a pawl. The ratchet is connected by an axle to a paddle wheel that is immersed in a fluid of molecules at temperature . The molecules constitute a heat bath in that they undergo random Brownian motion with a mean kinetic energy that is determined by the temperature. The device is imagined as being small enough that the impulse from a single molecular collision can turn the paddle. Although such collisions would tend to turn the rod in either direction with equal probability, the pawl allows the ratchet to rotate in one direction only. The net effect of many such random collisions would seem to be that the ratchet rotates continuously in that direction. The ratchet's motion then can be used to do work on other systems, for example lifting a weight (m) against gravity. The energy necessary to do this work apparently would come from the heat bath, without any heat gradient. Were such a machine to work successfully, its operation would violate the second law of thermodynamics, one form of which states: "It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work."


...
Wikipedia

...