*** Welcome to piglix ***

Zone melting


Zone melting (or zone refining or floating zone process or travelling melting zone) is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it as it moves through the ingot. The impurities concentrate in the melt, and are moved to one end of the ingot. Zone refining was invented by John Desmond Bernal and further developed by William Gardner Pfann in Bell Labs as a method to prepare high purity materials, mainly semiconductors, for manufacturing transistors. Its early use was on germanium for this purpose, but it can be extended to virtually any solute-solvent system having an appreciable concentration difference between solid and liquid phases at equilibrium. This process is also known as the float zone process, particularly in semiconductor materials processing.

The principle is that the segregation coefficient k (the ratio of an impurity in the solid phase to that in the liquid phase) is usually less than one. Therefore, at the solid/liquid boundary, the impurity atoms will diffuse to the liquid region. Thus, by passing a crystal boule through a thin section of furnace very slowly, such that only a small region of the boule is molten at any time, the impurities will be segregated at the end of the crystal. Because of the lack of impurities in the leftover regions which solidify, the boule can grow as a perfect single crystal if a seed crystal is placed at the base to initiate a chosen direction of crystal growth. When high purity is required, such as in semiconductor industry, the impure end of the boule is cut off, and the refining is repeated.

In zone refining, solutes are segregated at one end of the ingot in order to purify the remainder, or to concentrate the impurities. In zone leveling, the objective is to distribute solute evenly throughout the purified material, which may be sought in the form of a single crystal. For example, in the preparation of a transistor or diode semiconductor, an ingot of germanium is first purified by zone refining. Then a small amount of antimony is placed in the molten zone, which is passed through the pure germanium. With the proper choice of rate of heating and other variables, the antimony can be spread evenly through the germanium. This technique is also used for the preparation of silicon for use in computer chips.


...
Wikipedia

...