Parameters |
(integer) (real) (real) |
---|---|
Support | |
pmf | |
CDF | |
Mean | |
Mode | |
Entropy |
In probability theory and statistics, the Zipf–Mandelbrot law is a discrete probability distribution. Also known as the Pareto-Zipf law, it is a power-law distribution on ranked data, named after the linguist George Kingsley Zipf who suggested a simpler distribution called Zipf's law, and the mathematician Benoit Mandelbrot, who subsequently generalized it.
The probability mass function is given by:
where is given by:
which may be thought of as a generalization of a harmonic number. In the formula, is the rank of the data, and and are parameters of the distribution. In the limit as approaches infinity, this becomes the Hurwitz zeta function . For finite and the Zipf–Mandelbrot law becomes Zipf's law. For infinite and it becomes a Zeta distribution.