*** Welcome to piglix ***

Zinc-finger

Zinc finger, C2H2 type
Identifiers
Symbol zf-C2H2
Pfam PF00096
Pfam clan CL0361
InterPro IPR007087
PROSITE PS00028
Zinc knuckle
Identifiers
Symbol zf-CCHC
Pfam PF00098
InterPro IPR001878
SMART SM00343
PROSITE PS50158
TFIIB zinc-binding
Identifiers
Symbol TF_Zn_Ribbon
Pfam PF08271
Pfam clan Zn_Beta_Ribbon
InterPro IPR013137
PROSITE PS51134
Fungal Zn(2)-Cys(6) binuclear cluster domain
Identifiers
Symbol Zn_clus
Pfam PF00172
InterPro IPR001138
SMART GAL4
PROSITE PS00463
CDD cd00067
zf-C2HC
PDB 1pxe EBI.jpg
solution structure of a cchhc domain of neural zinc finger factor-1
Identifiers
Symbol zf-C2HC
Pfam PF01530
InterPro IPR002515

A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions in order to stabilize the fold. Originally coined to describe the finger-like appearance of a hypothesized structure from Xenopus laevis transcription factor IIIA, the zinc finger name has now come to encompass a wide variety of differing protein structures.Xenopus laevis TFIIIA was originally demonstrated to contain zinc and require the metal for function in 1983, the first such reported zinc requirement for a gene regulatory protein.

Proteins that contain zinc fingers (zinc finger proteins) are classified into several different structural families. Unlike many other clearly defined supersecondary structures such as Greek keys or β hairpins, there are a number of types of zinc fingers, each with a unique three-dimensional architecture. A particular zinc finger protein's class is determined by this three-dimensional structure, but it can also be recognized based on the primary structure of the protein or the identity of the ligands coordinating the zinc ion. In spite of the large variety of these proteins, however, the vast majority typically function as interaction modules that bind DNA, RNA, proteins, or other small, useful molecules, and variations in structure serve primarily to alter the binding specificity of a particular protein.

Since their original discovery and the elucidation of their structure, these interaction modules have proven ubiquitous in the biological world and may be found in 3% of the genes of the human genome. In addition, zinc fingers have become extremely useful in various therapeutic and research capacities. Engineering zinc fingers to have an affinity for a specific sequence is an area of active research, and zinc finger nucleases and zinc finger transcription factors are two of the most important applications of this to be realized to date.


...
Wikipedia

...