*** Welcome to piglix ***

Xenobiology


Xenobiology (XB) is a subfield of synthetic biology, the study of synthesizing and manipulating biological devices and systems. Xenobiology derives from the Greek word xenos, which means "stranger, guest". Xenobiology describes a form of biology that is not (yet) familiar to science and is not found in nature. In practice it describes novel biological systems and biochemistries that differ from the canonical DNA-RNA-20 amino acid system (see the classical central dogma in molecular biology). For example, instead of DNA or RNA, XB explores nucleic acid analogues, termed Xeno Nucleic Acid (XNA) as information carriers. It also focuses on an expanded genetic code and the incorporation of non-proteinogenic amino acids into proteins.

Astro means star and exo means outside. Both exo- and astrobiology deal with the search for naturally evolved life in the Universe, mostly on other planets in Circumstellar habitable zone. Whereas astrobiologists are concerned with the detection and analysis of (hypothetically) existing life elsewhere in the Universe, xenobiology attempts to design forms of life with a different biochemistry or different genetic code than on planet Earth.

In xenobiology, the aim is to design and construct biological systems that differ from their natural counterparts on one or more fundamental levels. Ideally these new-to-nature organisms would be different in every possible biochemical aspect exhibiting a very different genetic code. The long-term goal is to construct a cell that would store its genetic information not in DNA but in an alternative informational polymer consisting of xeno nucleic acids (XNA), different base pairs, using non-canonical amino acids and an altered genetic code. So far cells have been constructed that incorporate only one or two of these features.

Originally this research on alternative forms of DNA was driven by the question of how life evolved on earth and why RNA and DNA were selected by (chemical) evolution over other possible nucleic acid structures. Two hypotheses for the selection of RNA and DNA as life's backbone are either they are favored under life on Earth's conditions, or they were coincidentally present in pre-life chemistry and continue to be used now. Systematic experimental studies aiming at the diversification of the chemical structure of nucleic acids have resulted in completely novel informational biopolymers. So far a number of XNAs with new chemical backbones or leaving group of the DNA have been synthesized, e.g.: hexose nucleic acid (HNA); threose nucleic acid (TNA),glycol nucleic acid (GNA) cyclohexenyl nucleic acid (CeNA). The incorporation of XNA in a plasmid, involving 3 HNA codons, has been accomplished already in 2003. This XNA is used in vivo (E coli) as template for DNA synthesis. This study, using a binary (G/T) genetic cassette and two non-DNA bases (Hx/U), was extended to CeNA, while GNA seems to be too alien at this moment for the natural biological system to be used as template for DNA synthesis. Extended bases using a natural DNA backbone could, likewise, be transliterated into natural DNA, although to a more limited extent.


...
Wikipedia

...