*** Welcome to piglix ***

Writhe


In knot theory, there are several competing notions of the quantity writhe, or Wr. In one sense, it is purely a property of an oriented link diagram and assumes integer values. In another sense, it is a quantity that describes the amount of "coiling" of a mathematical knot (or any closed, simple curve) in three-dimensional space and assumes real numbers as values. In both cases, writhe is a geometric quantity, meaning that while deforming a curve (or diagram) in such a way that does not change its topology, one may still change its writhe.

In knot theory, the writhe is a property of an oriented link diagram. The writhe is the total number of positive crossings minus the total number of negative crossings.

A direction is assigned to the link at a point in each component and this direction is followed all the way around each component. If as you travel along a link component and cross over a crossing, the strand underneath goes from right to left, the crossing is positive; if the lower strand goes from left to right, the crossing is negative. One way of remembering this is to use a variation of the right-hand rule.

For a knot diagram, using the right-hand rule with either orientation gives the same result, so the writhe is well-defined on unoriented knot diagrams.

The writhe of a knot is unaffected by two of the three Reidemeister moves: moves of Type II and Type III do not affect the writhe. Reidemeister move Type I, however, increases or decreases the writhe by 1. This implies that the writhe of a knot is not an isotopy invariant of the knot itself — only the diagram. By a series of Type I moves one can set the writhe of a diagram for a given knot to be any integer at all.

Writhe is also a property of a knot represented as a curve in three-dimensional space. Strictly speaking, a knot is such a curve, defined mathematically as an embedding of a circle in three-dimensional Euclidean space, R3. By viewing the curve from different vantage points, one can obtain different projections and draw the corresponding knot diagrams. Its Wr (in the space curve sense) is equal to the average of the integral writhe values obtained from the projections from all vantage points. Hence, writhe in this situation can take on any real number as a possible value.


...
Wikipedia

...