*** Welcome to piglix ***

Working prototype


A prototype is an early sample, model, or release of a product built to test a concept or process or to act as a thing to be replicated or learned from. It is a term used in a variety of contexts, including semantics, design, electronics, and software programming. A prototype is generally used to evaluate a new design to enhance precision by system analysts and users. Prototyping serves to provide specifications for a real, working system rather than a theoretical one. In some design workflow models, creating a prototype (a process sometimes called materialization) is the step between the formalization and the evaluation of an idea.

The word derives from the Greek πρωτότυπον prototypon, "primitive form", neutral of πρωτότυπος prototypos, "original, primitive", from πρῶτος protos, "first" and τύπος typos, "impression".

Prototypes explore different aspects of an intended design:

In general, the creation of prototypes will differ from creation of the final product in some fundamental ways:

Engineers and prototype specialists will attempt to minimize the impact of these differences on the intended role for the prototype. For example, if a visual prototype is not able to use the same materials as the final product, they will attempt to substitute materials with properties that closely simulate the intended final materials.

Engineers and prototyping specialists seek to understand the limitations of prototypes to exactly simulate the characteristics of their intended design.

It is important to realize that by their very definition, prototypes will represent some compromise from the final production design. Due to differences in materials, processes and design fidelity, it is possible that a prototype may fail to perform acceptably whereas the production design may have been sound. A counter-intuitive idea is that prototypes may actually perform acceptably whereas the production design may be flawed since prototyping materials and processes may occasionally outperform their production counterparts.

In general, it can be expected that individual prototype costs will be substantially greater than the final production costs due to inefficiencies in materials and processes. Prototypes are also used to revise the design for the purposes of reducing costs through optimization and refinement.

It is possible to use prototype testing to reduce the risk that a design may not perform as intended, however prototypes generally cannot eliminate all risk. There are pragmatic and practical limitations to the ability of a prototype to match the intended final performance of the product and some allowances and engineering judgement are often required before moving forward with a production design.


...
Wikipedia

...