Wojciech H. Zurek | |
---|---|
Born | 1951 (age 65–66) Bielsko-Biała, Poland |
Fields | Quantum physics |
Institutions |
California Institute of Technology Los Alamos National Laboratory Santa Fe Institute University of California, Santa Barbara |
Alma mater | Jagiellonian University, Kraków. |
Doctoral advisor | William C. Schieve |
Known for |
Quantum decoherence No cloning theorem Quantum Darwinism Einselection Envariance Quantum discord Kibble-Zurek mechanism Kibble-Zurek scaling laws |
Wojciech Hubert Żurek (born 1951) is a Polish-born naturalized American theoretical physicist and a leading authority on quantum theory, especially decoherence and non-equilibrium dynamics of symmetry breaking and resulting defect generation (known as the Kibble-Zurek mechanism).
He attended the I Liceum Ogólnokształcące im. Mikołaja Kopernika (1st Secondary High School of Mikołaj Kopernik) in Bielsko-Biała. In 1974 he received his master of science in physics at Jagiellonian University, Kraków.
He is a staff scientist at Los Alamos National Laboratory and also a Laboratory Fellow (a prestigious distinction for a US National Laboratory scientist). Zurek was awarded the Albert Einstein Professorship Prize by the Foundation of the University of Ulm in Germany in 2010.
Zurek with his colleague Tom W. B. Kibble pioneered a paradigmatic framework for understanding defect generation in non-equilibrium processes, particularly, for understanding topological defects generated when a second-order phase transition point is crossed at a finite rate. The paradigm covers phenomena of enormous varieties and scales, ranging from structure formation in the early Universe to vortex generation in superfluids. The key mechanism of critical defect generation is known as the Kibble-Zurek mechanism, and the resulting scaling laws as the Kibble-Zurek scaling laws.
He pointed out the fundamental role of environment in determining a set of special basis states immune to environmental decoherence (pointer basis) which defines a classical measuring apparatus unambiguously. His work on decoherence paves a way towards the understanding of emergence of the classical world from the quantum mechanical one, getting rid of ad hoc demarcations between the two, like the one imposed by Niels Bohr in the famous Copenhagen interpretation of Quantum Mechanics. The underlying mechanism proposed and developed by Zurek and his collaborators is known as Quantum Darwinism. His work also has a lot of potential benefit to the emerging field of quantum computing.