Wireless power transfer (WPT), wireless power transmission, wireless energy transmission, or electromagnetic power transfer is the transmission of electrical energy from a power source to an electrical load, such as an electrical power grid or appliance, without the use of conductors like wires or cables. Wireless power is a generic term that refers to a number of different power transmission technologies that use time-varying electric, magnetic, or electromagnetic fields. In wireless power transfer, a wireless transmitter connected to a power source transmits field energy across an intervening space to one or more receivers, where it is converted back to an electric current and then used. Wireless transmission is useful to power electrical devices in cases where interconnecting wires are inconvenient, hazardous, or are not possible.
Wireless power techniques mainly fall into two categories, non-radiative and radiative. In near field or non-radiative techniques, power is transferred by magnetic fields using inductive coupling between coils of wire, or by electric fields using capacitive coupling between metal electrodes. Inductive coupling is the most widely used wireless technology; its applications include electric toothbrush chargers, RFID tags, smartcards, and chargers for implantable medical devices like artificial cardiac pacemakers, and inductive powering or charging of electric vehicles like SCMaglev, trains, AGV or buses. A current focus is to develop wireless systems to charge mobile and handheld computing devices such as cellphones, digital music players and portable computers without being tethered to a wall plug. In far-field or radiative techniques, also called power beaming, power is transferred by beams of electromagnetic radiation, like microwaves or laser beams. These techniques can transport energy longer distances but must be aimed at the receiver. Proposed applications for this type are solar power satellites, and wireless powered drone aircraft.