The process of implementing a damage detection and characterization strategy for engineering structures is referred to as structural health monitoring (SHM). Here damage is defined as changes to the material and/or geometric properties of a structural system, including changes to the boundary conditions and system connectivity, which adversely affect the system's performance. The SHM process involves the observation of a system over time using periodically sampled dynamic response measurements from an array of sensors, the extraction of damage-sensitive features from these measurements, and the statistical analysis of these features to determine the current state of system health. For long term SHM, the output of this process is periodically updated information regarding the ability of the structure to perform its intended function in light of the inevitable aging and degradation resulting from operational environments. After extreme events, such as earthquakes or blast loading, SHM is used for rapid condition screening and aims to provide, in near real time, reliable information regarding the integrity of the structure.
Qualitative and non-continuous methods have long been used to evaluate structures for their capacity to serve their intended purpose. Since the beginning of the 19th century, railroad wheel-tappers have used the sound of a hammer striking the train wheel to evaluate if damage was present. In rotating machinery, vibration monitoring has been used for decades as a performance evaluation technique. Two techniques in the field of SHM are wave propagation based techniques Raghavan and Cesnik and vibration based techniques. Broadly the literature for vibration based SHM can be divided into two aspects, the first wherein models are proposed for the damage to determine the dynamic characteristics, also known as the direct problem, for example refer, Unified Framework and the second, wherein the dynamic characteristics are used to determine damage characteristics, also known as the inverse problem, for example refer. In the last ten to fifteen years, SHM technologies have emerged creating an exciting new field within various branches of engineering. Academic conferences and scientific journals have been established during this time that specifically focus on SHM. These technologies are currently becoming increasingly common.
The SHM problem can be addressed in the context of a statistical pattern recognition paradigm. This paradigm can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model Development for Feature Discrimination. When one attempts to apply this paradigm to data from real world structures, it quickly becomes apparent that the ability to cleanse, compress, normalize and fuse data to account for operational and environmental variability is a key implementation issue when addressing Parts 2-4 of this paradigm. These processes can be implemented through hardware or software and, in general, some combination of these two approaches will be used.