Wilhelm Tolmé Runge (June 10, 1895 – June 9, 1987) was an electrical engineer and physicist who had a major involvement in developing radar systems in Germany.
Wilhelm Runge was born and raised in Hannover, where his father, Carl Runge, was a well-known professor of mathematics at the Technische Hochschule Hannover.
When World War I started, he was not doing well in his engineering studies and, in 1915, volunteered into the German Army. Unsuccessful in officer training, he was sent to the Western Front and the infamous trench warfare. By early 1917, he had reached the rank of Sergeant and was rescued from likely death by being selected by Lieutenant Richard Courant – a friend of his father who later married his sister, Nina – to go to occupied northern France and assist in developing the earth telegraph, a seismic apparatus.
At the close of the war, Runge, now highly motivated by his adverse military experience, returned to academic studies. He eventually earned the Doctor of Engineering (Electrical) degree from the Technical University at Darmstadt, and was later in life also awarded the higher academic degree (the Habilitation) in physics from the University of Göttingen. In 1923, while pursuing his academic studies, he started working at Telefunken, and in 1926, joined their development laboratory in Berlin.
In the early 1930s, Aryanization and Nationalism took a strong hold in Telefunken. While there is no evidence that Runge was personally involved in this, he was being promoted rapidly, so he must have been at least aware of the situation. If this was the case, it was ironic; Dr. Richard Courant, the man who ‘saved’ him from the trenches during World War I, was himself a Jew and had to flee Germany.
At Telefunken’s development laboratory, Runge experimented with high-frequency transmitters and had the tube department working on cm-wavelength devices. In the summer of 1935, Runge, now Director of Telefunken’s Radio Research Laboratory, initiated an internally funded project in radio-based detection technology. A-50 cm (600-MHz) receiver and 0.5-W transmitter were built, both using Barkhausen-Kurz tubes. With the antennas placed flat on the ground some distance apart, he arranged for an aircraft to fly overhead and found that the receiver gave a strong Doppler-beat interference signal.