*** Welcome to piglix ***

Wheel hub motor


The wheel hub motor (also called wheel motor, wheel hub drive, hub motor or in-wheel motor) is an electric motor that is incorporated into the hub of a wheel and drives it directly.

The electric wheel hub motor was raced by Ferdinand Porsche in 1897 in Vienna, Austria. Porsche's first engineering training was electrical, not internal combustion based. As a result he developed his first cars as electric cars with electric wheel hub motors that ran on batteries. The Lohner Porsche, fitted with one wheel motor in each of the front wheels, appeared at the World Exhibition in Paris in 1900 and created a sensation in the young automobile world. In the following years, 300 Lohner Porsches were made and sold to wealthy buyers.

Eventually the growth in power of the gasoline engine overtook the power of the electric wheel hub motors and this made up for any losses through a transmission. As a result autos moved to gas engines with transmissions, but they were never as efficient as electric wheel hub motors.

Several concept cars have been developed using in-wheel motors:

Hub motor electromagnetic fields are supplied to the stationary windings of the motor. The outer part of the motor follows, or tries to follow, those fields, turning the attached wheel. In a brushed motor, energy is transferred by brushes contacting the rotating shaft of the motor. Energy is transferred in a brushless motor electronically, eliminating physical contact between stationary and moving parts. Although brushless motor technology is more expensive, most are more efficient and longer-lasting than brushed motor systems.

A hub motor typically is designed in one of three configurations. Considered least practical is an axial-flux motor, where the stator windings are typically sandwiched between sets of magnets. The other two configurations are both radial designs with the motor magnets bonded to the rotor; in one, the inner rotation motor, the rotor sits inside the stator, as in a conventional motor. In the other, the outer-rotation motor, the rotor sits outside the stator and rotates around it. The application of hub motors in vehicular uses is still evolving, and neither configuration has become standard.

Electric motors have their greatest torque at startup, making them ideal for vehicles as they need the most torque at startup too. The idea of "revving up" so common with internal combustion engines is unnecessary with electric motors. Their greatest torque occurs as the rotor first begins to turn, which is why electric motors do not require a transmission. A gear-down arrangement may be needed, but unlike in a transmission normally paired with a combustion engine, no shifting is needed for electric motors.


...
Wikipedia

...