Wheel graph | |
---|---|
Several examples of wheel graphs
|
|
Vertices | n |
Edges | 2(n − 1) |
Diameter | 2 if n>4 1 if n=4 |
Girth | 3 |
Chromatic number | 3 if n is odd 4 if n is even |
Spectrum |
|
Properties |
Hamiltonian Self-dual Planar |
Notation | Wn |
In the mathematical discipline of graph theory, a wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. A wheel graph with n vertices can also be defined as the 1-skeleton of an (n-1)-gonal pyramid. Some authors write Wn to denote a wheel graph with n vertices (n ≥ 4); other authors instead use Wn to denote a wheel graph with n+1 vertices (n ≥ 3), which is formed by connecting a single vertex to all vertices of a cycle of length n. In the rest of this article we use the former notation.
Given a vertex set of {1,2,3,…,v}, the edge set of the wheel graph can be represented in set-builder notation by {{1,2},{1,3},…,{1,v},{2,3},{3,4},…,{v-1,v},{v,2}}.
Wheel graphs are planar graphs, and as such have a unique planar embedding. More specifically, every wheel graph is a Halin graph. They are self-dual: the planar dual of any wheel graph is an isomorphic graph. Every maximal planar graph, other than K4 = W4, contains as a subgraph either W5 or W6.
There is always a Hamiltonian cycle in the wheel graph and there are cycles in Wn (sequence in the OEIS).