Wet chemistry is a form of analytical chemistry that uses classical methods such as observation to analyze materials. It is called wet chemistry since most analyzing is done in the liquid phase. Wet chemistry is also called bench chemistry since many tests are performed at lab benches. Wet chemistry is now rarely done manually except for demonstration purposes. This is due to technological advancements in the field of chemistry.
Wet chemistry commonly uses laboratory glassware such as beakers and graduated cylinders to prevent materials from being contaminated or interfered with by unintended sources. Gasoline, Bunsen burners, and crucibles may also be used to evaporate and isolate substances in their dry forms. Wet chemistry is not performed with any advanced instruments since most automatically scan substances. Although, simple instruments such as scales are used to measure the weight of a substance before and after a change occurs. Many high school and college laboratories teach students basic wet chemistry methods.
Before the age of theoretical and computational chemistry it was the predominant form of scientific discovery in the chemical field. This is why it is sometimes referred to as classic chemistry or classical chemistry. Scientists would continuously developed accurate methods to improve the accuracy of wet chemistry. Later on, instruments were developed to conduct research impossible for wet chemistry. Overtime, this became a separate branch of analytical chemistry called instrumental analysis. Because of the high volume of wet chemistry that must be done in today's society and quality control requirements, many wet chemistry methods have been automated and computerized for streamlined analysis. The manual performance of wet chemistry mostly occurs in schools.
Qualitative methods use changes in information that cannot be quantified to detect a change. This can include a change in color, smell, texture, etc.
Chemical tests use reagents to indicate the presence of a specific chemical in an unknown solution. The reagents cause a unique reaction to occur based on the chemical it reacts with, allowing one to know what chemical is in the solution. An example is Heller's test where a test tube containing proteins has strong acids added to it. A cloudy ring forms where the substances meet, indicating the acids are denaturing the proteins. The cloud is a sign that proteins are present in a liquid. The method is used to detect proteins in a person's urine.