Wavelength selective switching components are used in WDM optical communications networks to route (switch) signals between optical fibres on a per-wavelength basis.
A WSS comprises a switching array that operates on light that has been dispersed in wavelength without the requirement that the dispersed light be physically demultiplexed into separate ports. This is termed a ‘disperse and switch’ configuration. For example an 88 channel WDM system can be routed from a “common” fiber to any one of N fibers by employing 88 1 x N switches. This represents a significant simplification of a demux and switch and multiplex architecture that would require (in addition to N +1 mux/demux elements) a non-blocking switch for 88 N x N channels which would test severely the manufacturability limits of large-scale optical cross-connects for even moderate fiber counts.
A more practical approach, and one adopted by the majority of WSS manufacturers is shown schematically in Figure 1 (to be uploaded). The various incoming channels of a common port are dispersed continuously onto a switching element which then directs and attenuates each of these channels independently to the N switch ports. The dispersive mechanism is generally based on holographic or ruled diffraction gratings similar to those used commonly in spectrometers. It can be advantageous, for achieving resolution and coupling efficiency, to employ a combination of a reflective or transmissive grating and a prism – known as a GRISM. The operation of the WSS can be bidirectional so the wavelengths can be multiplexed together from different ports onto a single common port. To date, the majority of deployments have used a fixed channel bandwidth of 50 or 100 GHz and 9 output ports are typically used.
The simplest and earliest commercial WSS were based on movable mirrors using Micro-Electro-Mechanical Systems (MEMS). A schematic of a MEMS-based WSS is shown in Figure 2(to be uploaded). The incoming light is broken into a spectrum by a diffraction grating (shown at RHS of Figure) and each wavelength channel then focuses on a separate MEMS mirror. By tilting the mirror in one dimension, the channel can be directed back into any of the fibers in the array. A second tilting axis allows transient crosstalk to be minimised, otherwise switching (eg) from port 1 to port 3 will always involve passing the beam across port 2. The second axis provides a means to attenuate the signal without increasing the coupling into neighbouring fibers. This technology has the advantage of a single steering surface, not necessarily requiring polarization diversity optics. It works well in the presence of a continuous signal, allowing the mirror tracking circuits to dither the mirror and maximise coupling.
MEMS based WSS typically produce good extinction ratios, but poor open loop performance for setting a given attenuation level. The main limitations of the technology arise from the channelization that the mirrors naturally enforce. During manufacturing, the channels must be carefully aligned with the mirrors, complicating the manufacturing process. Post-manufacturing alignment adjustments have been mainly limited to adjusting the gas pressure within the hermetic enclosure. This enforced channelization has also proved, so far, an insurmountable obstacle to implementing flexible channel plans where different channel sizes are required within a network. Additionally the phase of light at the mirror edge is not well controlled in a physical mirror so artefacts can arise in the switching of light near the channel edge due to interference of the light from each channel.