*** Welcome to piglix ***

Wave drag


In aeronautics, wave drag is a component of the aerodynamic drag on aircraft wings and fuselage, propeller blade tips and projectiles moving at transonic and supersonic speeds, due to the presence of shock waves. Wave drag is independent of viscous effects, and tends to present itself as a sudden and dramatic increase in drag as the vehicle increases speed to the Critical Mach number. It is the sudden and dramatic rise of wave drag that leads to the concept of a sound barrier.

Wave drag presents itself as part of pressure drag due to compressibility effects. It is caused by the formation of shock waves around a body. Shock waves create a considerable amount of drag, which can result in extreme drag on the body. Although shock waves are typically associated with supersonic flow, they can form at aircraft speeds on areas of the body where local airflow accelerates to supersonic speed. The effect is typically seen on aircraft at transonic speeds (about Mach 0.8), but it is possible to notice the problem at any speed over that of the critical Mach of that aircraft. It is so pronounced that, prior to 1947, it was thought that aircraft engines would not be powerful enough to overcome the enhanced drag, or that the forces would be so great that aircraft would be at risk of breaking up in midflight. It led to the concept of a sound barrier.

In 1947, studies into wave drag led to the development of perfect shapes to reduce wave drag as much as theoretically possible. For a fuselage the resulting shape was the Sears–Haack body, which suggested a perfect cross-sectional shape for any given internal volume. The von Kármán ogive was a similar shape for bodies with a blunt end, like a missile. Both were based on long narrow shapes with pointed ends, the main difference being that the ogive was pointed on only one end.


...
Wikipedia

...