Water aeration is the process of increasing the oxygen saturation of the water.
Water aeration is often required in water bodies that suffer from anoxic conditions, usually caused by adjacent human activities such as sewage discharges, agricultural run-off, or over-baiting a fishing lake. Aeration can be achieved through the infusion of air into the bottom of the lake, lagoon or pond or by surface agitation from a fountain or spray-like device to allow for oxygen exchange at the surface and the release of noxious gasses such as carbon dioxide, methane or hydrogen sulfide.
Dissolved oxygen (DO) is a major contributor to water quality. Not only do fish and other aquatic animals need it, but oxygen breathing aerobic bacteria decompose organic matter. When oxygen concentrations become low, anoxic conditions may develop which can decrease the ability of the water body to support life.
Any procedure by which oxygen is added to water can be considered a type of water aeration. This being the only criterion, there are a variety of ways to aerate water. These fall into two broad areas – surface aeration and subsurface aeration. There are a number of techniques and technologies available for both approaches
Natural aeration is a type of both sub-surface and surface aeration. It can occur through sub-surface aquatic plants. Through the natural process of photosynthesis, water plants release oxygen into the water providing it with the oxygen necessary for fish to live and aerobic bacteria to break down excess nutrients.
Oxygen can be driven into the water when the wind disturbs the surface of the water body and natural aeration can occur through a movement of water caused by an incoming stream, waterfall, or even a strong flood.
In large water bodies, autumn turn-over can introduce oxygen rich water into the oxygen poor Hypolimnion.
A fountain consists of a motor that powers a rotating impeller. The impeller pumps water from the first few feet of the water and expels it into the air. This process utilizes air-water contact to transfer oxygen. As the water is propelled into the air, it breaks into small droplets. Collectively, these small droplets have a large surface area through which oxygen can be transferred. Upon return, these droplets mix with the rest of the water and thus transfer their oxygen back to the ecosystem.