Aposematism (from Greek ἀπό apo away, σῆμα sema sign) was a new term coined by Edward Bagnall Poulton for Alfred Russel Wallace's concept of warning coloration. It describes a family of antipredator adaptations in which a warning signal is associated with the unprofitability of a prey item to potential predators. Aposematism always involves an advertising signal. The warning signal may take the form of conspicuous animal coloration, sounds, odours or other perceivable characteristics. Aposematic signals are beneficial for both the predator and prey, since both avoid potential harm.
Aposematism is exploited in Müllerian mimicry, where species with strong defences evolve to resemble one another. By mimicking similarly coloured species, the warning signal to predators is shared, causing them to learn more quickly at less of a cost to each of the species.
Warning signals do not necessarily require that a species actually possesses chemical or physical defences to deter predators. Mimics such as the nonvenomous California mountain kingsnake (Lampropeltis zonata), which has yellow, red, and black bands similar to those of highly venomous coral snake species, have essentially piggybacked on the successful aposematism of the model. The evolution of a warning signal by a mimicking species that resembles a species that possesses strong defences is known as Batesian mimicry.
The term aposematism was coined by the English zoologist Edward Bagnall Poulton in his 1890 book The Colours of Animals. He based the term on the Ancient Greek words ἀπό apo away, ση̑μα sēma sign, referring to signs that warn other animals away.
The function of aposematism is to prevent attack, by warning potential predators that the prey animal has defences such as being unpalatable or poisonous. The easily detected warning is a primary defence mechanism, and the non-visible defences are secondary. Aposematic signals are primarily visual, using bright colours and high-contrast patterns such as stripes. Warning signals are honest indications of noxious prey, because conspicuousness evolves in tandem with noxiousness. Thus, the brighter and more conspicuous the organism, the more toxic it usually is.