In fluid dynamics, a vortex is a region in a fluid in which the flow rotates around an axis line, which may be straight or curved. The plural of vortex is either vortices or vortexes. Vortices form in stirred fluids, and may be observed in phenomena such as smoke rings, whirlpools in the wake of boat, or the winds surrounding a tornado or dust devil.
Vortices are a major component of turbulent flow. The distribution of velocity, vorticity (the curl of the flow velocity), as well as the concept of circulation are used to characterize vortices. In most vortices, the fluid flow velocity is greatest next to its axis and decreases in inverse proportion to the distance from the axis.
In the absence of external forces, viscous friction within the fluid tends to organize the flow into a collection of irrotational vortices, possibly superimposed to larger-scale flows, including larger-scale vortices. Once formed, vortices can move, stretch, twist, and interact in complex ways. A moving vortex carries with it some angular and linear momentum, energy, and mass.
A key concept in the dynamics of vortices is the vorticity, a vector that describes the local rotary motion at a point in the fluid, as would be perceived by an observer that moves along with it. Conceptually, the vorticity could be observed by placing a tiny rough ball at the point in question, free to move with the fluid, and observing how it rotates about its center. The direction of the vorticity vector is defined to be the direction of the axis of rotation of this imaginary ball (according to the right-hand rule) while its length is twice the ball's angular velocity. Mathematically, the vorticity is defined as the curl (or rotational) of the velocity field of the fluid, usually denoted by and expressed by the vector analysis formula , where is the nabla operator and is the local flow velocity.