In quantum statistical mechanics, the von Neumann entropy, named after John von Neumann, is the extension of classical Gibbs entropy concepts to the field of quantum mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is
where denotes the trace and ln denotes the (natural) matrix logarithm. If ρ is written in terms of its eigenvectors |1〉, |2〉, |3〉, ... as
then the von Neumann entropy is merely
In this form, S can be seen to amount to the information theoretic Shannon entropy.
John von Neumann established a rigorous mathematical framework for quantum mechanics in his 1932 work Mathematical Foundations of Quantum Mechanics. In it, he provided a theory of measurement, where the usual notion of wave-function collapse is described as an irreversible process (the so-called von Neumann or projective measurement).
The density matrix was introduced, with different motivations, by von Neumann and by Lev Landau. The motivation that inspired Landau was the impossibility of describing a subsystem of a composite quantum system by a state vector. On the other hand, von Neumann introduced the density matrix in order to develop both quantum statistical mechanics and a theory of quantum measurements.