The expression figure of the Earth has various meanings in geodesy according to the way it is used and the precision with which the Earth's size and shape is to be defined. While the sphere is a close approximation of the true figure of the Earth and satisfactory for many purposes, geodesists have developed several models that more closely approximate the shape of the Earth so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.
The actual topographic surface is most apparent with its variety of land forms and water areas. This is, in fact, the surface on which actual Earth measurements are made. However, it is not feasible for exact mathematical analysis, because the formulas which would be required to take the irregularities into account would necessitate a prohibitive amount of computation. The topographic surface is generally the concern of topographers and hydrographers.
The Pythagorean concept of a spherical Earth offers a simple surface that is mathematically easy to deal with. Many astronomical and navigational computations use it as a surface representing the Earth. While the sphere is a close approximation of the true figure of the Earth and satisfactory for many purposes, to the geodesists interested in the measurement of long distances on the scale of continents and oceans, a more exact figure is necessary. Closer approximations range from modelling the shape of the surface of the entire Earth as an oblate spheroid or an oblate ellipsoid, to the use of spherical harmonics or local approximations in terms of local reference ellipsoids.
The idea of a planar or flat surface for Earth, however, is still sufficient for surveys of small areas, as the local topography is far more significant than the curvature. Plane-table surveys are made for relatively small areas, and no account is taken of the curvature of the Earth. A survey of a city would likely be computed as though the Earth were a plane surface the size of the city. For such small areas, exact positions can be determined relative to each other without considering the size and shape of the entire Earth.