Visual search is a type of perceptual task requiring attention that typically involves an active scan of the visual environment for a particular object or feature (the target) among other objects or features (the distractors). Visual search can take place with or without eye movements. The ability to consciously locate an object or target amongst a complex array of stimuli has been extensively studied over the past 40 years. Practical examples of using visual search can be seen in everyday life, such as when one is picking out a product on a supermarket shelf, when animals are searching for food amongst piles of leaves, when trying to find your friend in a large crowd of people, or simply when playing visual search games such as Where's Wally? Many visual search paradigms have used eye movement as a means to measure the degree of attention given to stimuli. However, vast research to date suggests that eye movements move independently of attention, and therefore are not a reliable method to examine the role of attention. Much previous literature on visual search uses reaction time in order to measure the time it takes to detect the target amongst its distractors. An example of this could be a green square (the target) amongst a set of red circles (the distractors).
Feature search (also known as "disjunctive" or "efficient" search) is a visual search process that focuses on identifying a previously requested target amongst distractors that differ from the target by a unique visual feature such as color, shape, orientation, or size. An example of a feature search task is asking a participant to identify a white square (target) surrounded by black squares (distractors). In this type of visual search, the distractors are characterized by the same visual features. The efficiency of feature search in regards to reaction time(RT) and accuracy depends on the "pop out" effect, bottom-up processing, and parallel processing. However, the efficiency of feature search is unaffected by the number of distractors present. The "pop out" out effect is an element of feature search that characterizes the target's ability to stand out from surrounding distractors due to its unique feature. Bottom-up processing, which is the processing of information that depends on input from the environment, explains how one utilizes feature detectors to process characteristics of the stimuli and differentiate a target from its distractors. This draw of visual attention towards the target due to bottom-up processes is known as "saliency." Lastly, parallel processing is the mechanism that then allows one's feature detectors to work simultaneously in identifying the target.