*** Welcome to piglix ***

Visual masking


Visual masking occurs when the perception of one stimulus, called a target, is affected by the presence of another stimulus, called a mask. With respect to time, there are three different types of masking – forward, backward, and simultaneous. These correspond to trials where the mask precedes the target, follows the disappearance of the target, or appears at the same time as the target, respectively. In the spatial domain, there are two different types of masking: pattern masking and metacontrast. Pattern masking occurs when the target and mask are presented within the same retinal location, and metacontrast occurs when the mask does not overlap with the target location.

Suppression can be seen in both forward and backward masking when there is pattern masking, but not when there is metacontrast. Simultaneous masking, however, will produce facilitation of target visibility during pattern masking. Facilitation also comes about when metacontrast is combined with either simultaneous or forward masking. This is because it takes time for the mask to reach the target’s location through lateral propagation. As the target gets further from the mask, the time required for lateral propagation increases. Thus, the masking effect will increase as the mask gets closer to the target.

As the time difference between the target and the mask increases, the masking effect decreases. This is because the integration time of a target stimulus has an upper limit 200 ms, based on physiological experiments and as the separation approaches this limit, the mask is able to produce less of an effect on the target, as the target has had more time to form a full neural representation in the brain. Polat, Sterkin, and Yehezkel went into great detail in explaining the effect of temporal matching between target input and lateral propagation of the mask. Based on data from previous single-unit recordings, they concluded that the time window for any sort of efficient interaction with target processing is 210 to 310 ms after the target’s appearance. Anything outside of this window would fail to cause any sort of masking effect. This explains why there is a masking effect when the mask is presented 50 ms after the target, but not when the inter-stimulus interval between mask and target is 150 ms. In the first case, mask response would propagate to the target location and be processed with a delay of 260 to 310 ms, whereas the ISI of 150 would result in a delay of 410 to 460 ms.

In dichoptic visual masking, the target is presented to one eye and the mask to the other, whereas in monoptic visual masking, both eyes are presented with the target and the mask. It was found that the masking effect was just as strong in dichoptic as it was in monoptic masking, and that it showed the same timing characteristics.

There are multiple theories surrounding the neural correlates of masking, but most of them agree on a few key ideas. First, backward visual masking comes about from suppression of the target’s “after-discharge”, where the after-discharge can be thought of as the neural response to the target’s termination. Forward masking, on the other hand, is correlated to the suppression of the target’s “onset-response”, which can be thought of as the neural response to the target’s appearance.


...
Wikipedia

...