The visual N1 is a visual evoked potential, a type of event-related electrical potential (ERP), that is produced in the brain and recorded on the scalp. The N1 is so named to reflect the polarity and typical timing of the component. The "N" indicates that the polarity of the component is negative with respect to an average mastoid reference. The "1" originally indicated that it was the first negative-going component, but it now better indexes the typical peak of this component, which is around 150 to 200 milliseconds post-stimulus. The N1 deflection may be detected at most recording sites, including the occipital, parietal, central, and frontal electrode sites. Although, the visual N1 is widely distributed over the entire scalp, it peaks earlier over frontal than posterior regions of the scalp, suggestive of distinct neural and/or cognitive correlates. The N1 is elicited by visual stimuli, and is part of the visual evoked potential – a series of voltage deflections observed in response to visual onsets, offsets, and changes. Both the right and left hemispheres generate an N1, but the laterality of the N1 depends on whether a stimulus is presented centrally, laterally, or bilaterally. When a stimulus is presented centrally, the N1 is bilateral. When presented laterally, the N1 is larger, earlier, and contralateral to the visual field of the stimulus. When two visual stimuli are presented, one in each visual field, the N1 is bilateral. In the latter case, the N1's asymmetrical skewedness is modulated by attention. Additionally, its amplitude is influenced by selective attention, and thus it has been used to study a variety of attentional processes.
Although the N1 is an early visual component that is part of the normal response to visual stimulation, it has been studied most extensively with respect to its sensitivity to selective attention. Initial studies focusing on the modulation of the N1 amplitude with respect to attention found limited evidence for N1 attention effects. However, uncertainty about the relationship between N1 amplitude and attention was resolved by Haider, Spong, and Lindsley's (1964) groundbreaking study in which levels of attention were found to systematically relate to variation in the amplitude of the N1. Specifically, Haider et al. (1964) employed a vigilance task requiring visual discrimination and response to ensure that participants attended to the stimuli, instead of passively observing the visual images. Participants observed an array of light flashes and were told to respond with a button press to dim flashes. These dim flashes were interspersed with brighter flashes that did not require a response. The experiment lasted for approximately 100 minutes, and, typical of this type of vigilance task, accurate responding to the dim flashes decreased over time, which is indicative of the decline in attention across the experiment. Importantly, the amplitude of the N1 systematically varied with the response to the dim flashes. As accuracy and attention decreased, the amplitude of the N1 decreased, suggesting that the amplitude of the N1 is intimately tied to levels of attention.