*** Welcome to piglix ***

Virtual photon


In physics, a virtual particle is a transient fluctuation that exhibits some of the characteristics of an ordinary particle, but whose existence is limited by the uncertainty principle. The concept of virtual particles arises in perturbation theory of quantum field theory where interactions between ordinary particles are described in terms of exchanges of virtual particles. Any process involving virtual particles admits a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines.

Virtual particles do not necessarily carry the same mass as the corresponding real particle, although they always conserve energy and momentum. The longer the virtual particle exists, the closer its characteristics come to those of ordinary particles. They are important in the physics of many processes, including particle scattering and Casimir forces. In quantum field theory, even classical forces—such as the electromagnetic repulsion or attraction between two charges—can be thought of as due to the exchange of many virtual photons between the charges.

The term is somewhat loose and vaguely defined, in that it refers to the view that the world is made up of "real particles": it is not; rather, "real particles" are better understood to be excitations of the underlying quantum fields. Virtual particles are also excitations of the underlying fields, but are "temporary" in the sense that they appear in calculations of interactions, but never as asymptotic states or indices to the scattering matrix. The accuracy and use of virtual particles in calculations is firmly established, but as they cannot be detected in experiments, deciding how to precisely describe them is a topic of debate.

The concept of virtual particles arises in the perturbation theory of quantum field theory, an approximation scheme in which interactions (in essence, forces) between actual particles are calculated in terms of exchanges of virtual particles. Such calculations are often performed using schematic representations known as Feynman diagrams, in which virtual particles appear as internal lines. By expressing the interaction in terms of the exchange of a virtual particle with four-momentum q, where q is given by the difference between the four-momenta of the particles entering and leaving the interaction vertex, both momentum and energy are conserved at the interaction vertices of the Feynman diagram.


...
Wikipedia

...