In number theory, Vieta jumping, also known as root flipping, is a proof technique. It is most often used for problems in which a relation between two positive integers is given, along with a statement to prove about its solutions. There are multiple methods of Vieta jumping, all of which involve the common theme of infinite descent by finding new solutions to an equation using Vieta's formulas.
Vieta jumping is a relatively new technique in solving mathematical olympiad problems, as the first olympiad problem to use it in a solution was proposed in 1988 for the International Mathematics Olympiad and assumed to be the most difficult problem on the contest.Arthur Engel wrote the following about the problem difficulty:
Nobody of the six members of the Australian problem committee could solve it. Two of the members were husband and wife George and Esther Szekeres, both famous problem solvers and problem creators. Since it was a number theoretic problem it was sent to the four most renowned Australian number theorists. They were asked to work on it for six hours. None of them could solve it in this time. The problem committee submitted it to the jury of the XXIX IMO marked with a double asterisk, which meant a superhard problem, possibly too hard to pose. After a long discussion, the jury finally had the courage to choose it as the last problem of the competition. Eleven students gave perfect solutions.
Among the eleven students receiving the maximum score for solving this problem were future Fields-medallist Ngô Bảo Châu, Stanford math professor Ravi Vakil, and Mills College professor Zvezdelina Stankova.