In auction theory, a Vickrey–Clarke–Groves (VCG) auction is a type of sealed-bid auction of multiple items. Bidders submit bids that report their valuations for the items, without knowing the bids of the other people in the auction. The auction system assigns the items in a socially optimal manner: it charges each individual the harm they cause to other bidders. It also gives bidders an incentive to bid their true valuations, by ensuring that the optimal strategy for each bidder is to bid their true valuations of the items. It is a generalization of a Vickrey auction for multiple items.
The auction is named after William Vickrey,Edward H. Clarke, and Theodore Groves for their papers that successively generalized the idea.
The VCG auction is a specific use of the more general VCG Mechanism. While the VCG auction tries to make a socially optimal allocation of items, VCG mechanisms allow for the selection of a socially optimal outcome out of a set of possible outcomes.
We consider an auction where a set of identical products are being sold. Bidders can take part in the auction by announcing the maximum price they are willing to pay to receive N products. Each buyer is allowed to declare more than one bid, since its willingness-to-pay per unit might be different depending on the total number of units it receives. Bidders cannot see other people's bids at any moment since they are sealed (only visible to the auction system). Once all the bids are made, the auction is closed.
All the possible combinations of bids are then considered by the auction system, and the one maximizing the total sum of bids is kept, with the condition that it does not exceed the total amount of products available and that at most one bid from each bidder can be used. Bidders who have made a successful bid then receive the product quantity specified in their bid. The price they pay in exchange, however, is not the amount they had bid initially but only the marginal harm their bid has caused to other bidders (which is at most as high as their original bid).
This marginal harm caused to other participants (i.e. the final price paid by each individual with a successful bid) can be calculated as: (sum of bids of the auction from the second best combination of bids) - (what other bidders have bid in the current (best) combination of bids). If the sum of bids of the second best combination of bids is the same as that of the best combination, then the price paid by the buyers will be the same as their initial bid. In all other cases, the price paid by the buyers will be lower.