*** Welcome to piglix ***

Very large floating structure


Very large floating structures (VLFSs) or very large floating platforms (VLFPs) are manmade islands, which may be constructed to create floating airports, bridges, breakwaters, piers and docks, storage facilities (for oil & natural gas), wind and solar power plants, for military purposes, to create industrial space, emergency bases, entertainment facilities (such as casinos), recreation parks, mobile offshore structures and even for habitation. Currently, several different concepts have been proposed for building floating cities or huge living complexes. Some units have been constructed and are presently in operation.

Floating structures offer several advantages over more permanent structures which might extend from the shore into open water:

VLFS differ from watercraft in that the usable area is the top surface instead of the internal (hold) areas. Thus a useful VLFS will cover significant area. It can be constructed by joining the necessary number of floating units together. The design of the floating structure must comport with safety and strength requirements, operating conditions, etc. Steel, concrete (prestressed or reinforced hybrid) or steel-concrete composite materials may be used to build the floating structure. The motion of the floating structure due to wind or wave action must be substantially neutralized, to ensure the safety of people and facilities on a VLFS, and to allow useful activities. VLFS must be securely moored to the ocean bed.

Current designs for VLFS fall into two categories: semi-submersible, and pontoon.

The semi-submersible-type VLFS has a raised platform above sea level using column tubes; it is more suitable for deployment in high seas with large waves. In open sea, where the waves are relatively large, the semi-submersible VLFS minimizes the effects of waves while maintaining a constant buoyant force. Semi-submersible types are used for petroleum exploration in deep waters. They are fixed in place by column tubes, piles, or other bracing systems.


...
Wikipedia

...