In quantum mechanics, the variational method is one way of finding approximations to the lowest energy eigenstate or ground state, and some excited states. This allows calculating approximate wavefunctions such as molecular orbitals. The basis for this method is the variational principle.
The method consists of choosing a "trial wavefunction" depending on one or more parameters, and finding the values of these parameters for which the expectation value of the energy is the lowest possible. The wavefunction obtained by fixing the parameters to such values is then an approximation to the ground state wavefunction, and the expectation value of the energy in that state is an upper bound to the ground state energy. The Hartree–Fock method and the Ritz method both apply the variational method.
Suppose we are given a Hilbert space and a Hermitian operator over it called the Hamiltonian H. Ignoring complications about continuous spectra, we look at the discrete spectrum of H and the corresponding eigenspaces of each eigenvalue λ (see spectral theorem for Hermitian operators for the mathematical background):
where is the Kronecker delta