A variable capacitor is a capacitor whose capacitance may be intentionally and repeatedly changed mechanically or electronically. Variable capacitors are often used in L/C circuits to set the resonance frequency, e.g. to tune a radio (therefore it is sometimes called a tuning capacitor or tuning condenser), or as a variable reactance, e.g. for impedance matching in antenna tuners.
In mechanically controlled variable capacitors, the distance between the plates, or the amount of plate surface area which overlaps, can be changed.
The most common form arranges a group of semicircular metal plates on a rotary axis (“rotor”) that are positioned in the gaps between a set of stationary plates (“stator”) so that the area of overlap can be changed by rotating the axis. Air or plastic foils can be used as dielectric material. By choosing the shape of the rotary plates, various functions of capacitance vs. angle can be created, e.g. to obtain a linear frequency scale. Various forms of reduction gear mechanisms are often used to achieve finer tuning control, i.e. to spread the variation of capacity over a larger angle, often several turns.
Cmin = 20 pF
C = 269 pF
Cmax = 520 pF
A vacuum variable capacitor uses a set of plates made from concentric cylinders that can be slid in or out of an opposing set of cylinders (sleeve and plunger). These plates are then sealed inside of a non-conductive envelope such as glass or ceramic and placed under a high vacuum. The movable part (plunger) is mounted on a flexible metal membrane that seals and maintains the vacuum. A screw shaft is attached to the plunger, when the shaft is turned the plunger moves in or out of the sleeve and the value of the capacitor changes. The vacuum not only increases the working voltage and current handling capacity of the capacitor it also greatly reduces the chance of arcing across the plates. The most common usage for vacuum variables are in high powered transmitters such as those used for broadcasting, military and amateur radio as well as high powered RF tuning networks. Vacuum variables can also be more convenient since the elements are under a vacuum the working voltage can be higher than an air variable the same size, allowing the size of the vacuum capacitor to be reduced.