Vapor lock is a problem that mostly affects gasoline-fueled internal combustion engines.
It occurs when the liquid fuel changes state from liquid to gas while still in the fuel delivery system. This disrupts the operation of the fuel pump, causing loss of feed pressure to the carburetor or fuel injection system, resulting in transient loss of power or complete stalling. Restarting the engine from this state may be difficult.
The fuel can vaporize due to being heated by the engine, by the local climate or due to a lower boiling point at high altitude. In regions where higher volatility fuels are used during the winter to improve the starting of the engine, the use of "winter" fuels during the summer can cause vapor lock to occur more readily.
Vapor lock was far more common in older gasoline fuel systems incorporating a low-pressure mechanical fuel pump driven by the engine, located in the engine compartment and feeding a carburetor. Such pumps were typically located higher than the fuel tank, were directly heated by the engine and fed fuel directly to the float bowl inside the carburetor. Fuel was drawn under negative pressure (gauge pressure) from the feed line, increasing the risk of a vapor lock developing between the tank and pump. A vapor lock being drawn into the fuel pump could disrupt the fuel pressure long enough for the float chamber in the carburetor to partially or completely drain, causing fuel starvation in the engine. Even temporary disruption of fuel supply into the float chamber is not ideal; most carburetors are designed to run at a fixed level of fuel in the float bowl and reducing the level will reduce the fuel to air mixture delivered to the engine.
Carburetor units may not effectively deal with fuel vapor being delivered to the float chamber. Most designs incorporate a pressure balance duct linking the top of the float bowl with either the intake to the carburetor or the outside air. Even if the pump can handle vapor locks effectively, fuel vapor entering the float bowl has to be vented. If this is done via the intake system, the mixture is, in effect, enriched, creating a mixture control and pollution issue. If it is done by venting to the outside, the result is direct hydrocarbon pollution and an effective loss of fuel efficiency and possibly a fuel odor problem. For this reason, some fuel delivery systems allow fuel vapor to be returned to the fuel tank to be condensed back to the liquid phase, or using an active carbon filled canister where fuel vapor is absorbed. This is usually implemented by removing fuel vapor from the fuel line near the engine rather than from the float bowl. Such a system may also divert excess fuel pressure from the pump back to the tank.