Vapnik–Chervonenkis theory (also known as VC theory) was developed during 1960–1990 by Vladimir Vapnik and Alexey Chervonenkis. The theory is a form of computational learning theory, which attempts to explain the learning process from a statistical point of view.
VC theory is related to statistical learning theory and to empirical processes. Richard M. Dudley and Vladimir Vapnik, among others, have applied VC-theory to empirical processes.
VC theory covers at least four parts (as explained in The Nature of Statistical Learning Theory):
VC Theory is a major subbranch of statistical learning theory. One of its main applications in statistical learning theory is to provide generalization conditions for learning algorithms. From this point of view, VC theory is related to stability, which is an alternative approach for characterizing generalization.
In addition, VC theory and VC dimension are instrumental in the theory of empirical processes, in the case of processes indexed by VC classes. Arguably these are the most important applications of the VC theory, and are employed in proving generalization. Several techniques will be introduced that are widely used in the empirical process and VC theory. The discussion is mainly based on the book Weak Convergence and Empirical Processes: With Applications to Statistics.
Let be random elements defined on a measurable space . For a measure Q set: