*** Welcome to piglix ***

Vanadium(IV) oxide

Vanadium(IV) oxide
Vanadium(IV) oxide
Names
IUPAC name
Vanadium(IV) oxide
Other names
Vanadium dioxide
Divanadium tetroxide
Identifiers
ECHA InfoCard 100.031.661
PubChem CID
Properties
VO2
Molar mass 82.94 g/mol
Appearance Deep Blue Powder
Density 4.571 g/cm3 (monoclinic)
4.653 g/cm3 (tetragonal)
Melting point 1,967 °C
+270.0·10−6 cm3/mol
Structure
Distorted rutile (<70 °C, monoclinic)
Rutile (>70 °C, tetragonal)
Hazards
R-phrases (outdated) 36/37/38
S-phrases (outdated) 26-36/37/39
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point Non-flammable
Related compounds
Other anions
Vanadium disulfide
Vanadium diselenide
Vanadium ditelluride
Other cations
Niobium(IV) oxide
Tantalum(IV) oxide
Related vanadium oxides
Vanadium(II) oxide
Vanadium(III) oxide
Vanadium(V) oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Vanadium(IV) dioxide is an inorganic compound with the formula VO2. It is a dark blue solid. Vanadium(IV) dioxide is amphoteric, dissolving in non-oxidising acids to give the blue vanadyl ion, [VO]2+ and in alkali to give the brown [V4O9]2− ion, or at high pH [VO4]4−. VO2 has a phase transition very close to room temperature(~66 °C). Electrical resistivity, opacity, etc, can change up several orders. Due to these properties, it has been widely used in surface coating, sensors, and imaging. Potential applications include use in memory devices.

At temperatures below Tc=340 K, VO
2
has a monoclinic (space group P21/c) crystal structure. Above Tc, the structure is tetragonal, like rutile TiO
2
. In the monoclinic phase, the V4+ ions form pairs along the c axis, leading to alternate short and long V-V distances of 2.65 Å and 3.12 Å. In comparison, in the rutile phase the V4+ ions are separated by a fixed distance of 2.96 Å. As a result, the number of V4+ ions in the crystallographic unit cell doubles from the rutile to the monoclinic phase.

The equilibrium morphology of rutile VO
2
particles is acicular, laterally confined by (110) surfaces, which are the most stable termination planes. The surface tends to be oxidized with respect to the stoichiometric composition, with the oxygen adsorbed on the (110) surface forming vanadyl species. The presence of V5+ ions at the surface of VO
2
films has been observed by x-ray photoelectron spectroscopy (XPS) measurements.


...
Wikipedia

...