In quantum physics, a quantum fluctuation (or quantum vacuum fluctuation or vacuum fluctuation) is the temporary change in the amount of energy in a point in space, as explained in Werner Heisenberg's uncertainty principle.
According to one formulation of the principle, energy and time can be related by the relation
This allows the creation of particle-antiparticle pairs of virtual particles. The effects of these particles are measurable, for example, in the effective charge of the electron, different from its "naked" charge.
In the modern view, energy is always conserved, but because the particle number operator does not commute with a field's Hamiltonian or energy operator, the field's lowest-energy or ground state, often called the vacuum state, is not, as one might expect from that name, a state with no particles, but rather a quantum superposition of particle number eigenstates with 0, 1, 2...etc. particles.
Quantum fluctuations may have been very important in the origin of the structure of the universe: according to the model of inflation the ones that existed when inflation began were amplified and formed the seed of all current observed structure. Vacuum energy may also be responsible for the current accelerated expansion of the universe (cosmological constant).
A quantum fluctuation is the temporary appearance of energetic particles out of empty space, as allowed by the uncertainty principle. The uncertainty principle states that for a pair of conjugate variables such as position/momentum or energy/time, it is impossible to have a precisely determined value of each member of the pair at the same time. For example, a particle pair can pop out of the vacuum during a very short time interval.