In predicate logic universal instantiation (UI, also called universal specification or universal elimination, and sometimes confused with Dictum de omni) is a valid rule of inference from a truth about each member of a class of individuals to the truth about a particular individual of that class. It is generally given as a quantification rule for the universal quantifier but it can also be encoded in an axiom. It is one of the basic principles used in quantification theory.
Example: "All dogs are mammals. Fido is a dog. Therefore Fido is a mammal."
In symbols the rule as an axiom schema is
for some term a and where is the result of substituting a for all occurrences of x in A. is an instance of