In mathematics, a universal graph is an infinite graph that contains every finite (or at-most-countable) graph as an induced subgraph. A universal graph of this type was first constructed by R. Rado and is now called the Rado graph or random graph. More recent work has focused on universal graphs for a graph family F: that is, an infinite graph belonging to F that contains all finite graphs in F. For instance, the Henson graphs are universal in this sense for the i-clique-free graphs.
A universal graph for a family F of graphs can also refer to a member of a sequence of finite graphs that contains all graphs in F; for instance, every finite tree is a subgraph of a sufficiently large hypercube graph so a hypercube can be said to be a universal graph for trees. However it is not the smallest such graph: it is known that there is a universal graph for n-node trees with only n vertices and O(n log n) edges, and that this is optimal. A construction based on the planar separator theorem can be used to show that n-vertex planar graphs have universal graphs with O(n3/2) edges, and that bounded-degree planar graphs have universal graphs with O(n log n) edges.Sumner's conjecture states that tournaments are universal for polytrees, in the sense that every tournament with 2n − 2 vertices contains every polytree with n vertices as a subgraph.