*** Welcome to piglix ***

Universal coefficient theorem


In algebraic topology, universal coefficient theorems establish relationships between homology and cohomology theories. For instance, the integral homology theory of a topological space X, and its homology with coefficients in any abelian group A are related as follows: the integral homology groups

completely determine the groups

Here Hi might be the simplicial homology or more general singular homology theory: the result itself is a pure piece of homological algebra about chain complexes of free abelian groups. The form of the result is that other coefficients A may be used, at the cost of using a Tor functor.

For example it is common to take A to be Z/2Z, so that coefficients are modulo 2. This becomes straightforward in the absence of 2-torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers bi of X and the Betti numbers bi,F with coefficients in a field F. These can differ, but only when the characteristic of F is a prime number p for which there is some p-torsion in the homology.


...
Wikipedia

...