*** Welcome to piglix ***

Unitary operator


In functional analysis, a branch of mathematics, a unitary operator is a surjective bounded operator on a Hilbert space preserving the inner product. Unitary operators are usually taken as operating on a Hilbert space, but the same notion serves to define the concept of isomorphism between Hilbert spaces.

A unitary element is a generalization of a unitary operator. In a unital *-algebra, an element U of the algebra is called a unitary element if U*U = UU* = I, where I is the identity element.

Definition 1. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H that satisfies U*U = UU* = I, where U* is the adjoint of U, and I : H → H is the identity operator.

The weaker condition U*U = I defines an isometry. The other condition, UU* = I, defines a coisometry. Thus a unitary operator is a bounded linear operator which is both an isometry and a coisometry, or, equivalently, a surjective isometry.

An equivalent definition is the following:

Definition 2. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold:


...
Wikipedia

...