In mathematics, a versor is a quaternion of norm one (a unit quaternion).
Each versor has the form
where the r2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions). In case a = π/2, the versor is termed a right versor.
The corresponding 3-dimensional rotation has the angle 2a about the axis r in axis–angle representation.
The word is derived from Latin versare = "to turn" with the suffix -or forming a noun from the verb (i.e. versor = "the turner"). It was introduced by William Rowan Hamilton in the context of his quaternion theory.
Hamilton denoted the versor of a quaternion q by the symbol Uq. He was then able to display the general quaternion in polar coordinate form
where Tq is the norm of q. The norm of a versor is always equal to one; hence they occupy the unit 3-sphere in H. Examples of versors include the eight elements of the quaternion group. Of particular importance are the right versors, which have angle π/2. These versors have zero scalar part, and so are vectors of length one (unit vectors). The right versors form a sphere of square roots of −1 in the quaternion algebra. The generators i, j, and k are examples of right versors, as well as their additive inverses. Other versors include the twenty-four Hurwitz quaternions that have the norm 1 and form vertices of a 24-cell polychoron.