*** Welcome to piglix ***

Uniform 6-polytope


In six-dimensional geometry, a uniform polypeton (or uniform 6-polytope) is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.

The complete set of convex uniform polypeta has not been determined, but most can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter-Dynkin diagrams. Each combination of at least one ring on every connected group of nodes in the diagram produces a uniform 6-polytope.

The simplest uniform polypeta are regular polytopes: the 6-simplex {3,3,3,3,3}, the 6-cube (hexeract) {4,3,3,3,3}, and the 6-orthoplex (hexacross) {3,3,3,3,4}.

Uniform 6-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams.

There are four fundamental reflective symmety groups which generate 153 unique uniform 6-polytopes.

Uniform prism

There are 6 categorical uniform prisms based on the uniform 5-polytopes.

Uniform duoprism

There are 11 categorical uniform duoprismatic families of polytopes based on Cartesian products of lower-dimensional uniform polytopes. Five are formed as the product of a uniform 4-polytope with a regular polygon, and six are formed by the product of two uniform polyhedra:


...
Wikipedia

...