In statistics, explained variation measures the proportion to which a mathematical model accounts for the variation (dispersion) of a given data set. Often, variation is quantified as variance; then, the more specific term explained variance can be used.
The complementary part of the total variation is called unexplained or residual.
Following Kent (1983), we use the Fraser information (Fraser 1965)
where is the probability density of a random variable , and with () are two families of parametric models. Model family 0 is the simpler one, with a restricted parameter space .