*** Welcome to piglix ***

Undulatory locomotion


Undulatory locomotion is the type of motion characterized by wave-like movement patterns that act to propel an animal forward. Examples of this type of gait include crawling in snakes, or swimming in the lamprey. Although this is typically the type of gait utilized by limbless animals, some creatures with limbs, such as the salamander, choose to forgo use of their legs in certain environments and exhibit undulatory locomotion. This movement strategy is important to study in order to create novel robotic devices capable of traversing a variety of environments.

In limbless locomotion, forward locomotion is generated by propagating flexural waves along the length of the animal's body. Forces generated between the animal and surrounding environment lead to a generation of alternating sideways forces that act to move the animal forward. These forces generate thrust and drag.

Simulation predicts that thrust and drag are dominated by viscous forces at low Reynolds numbers and inertial forces at higher Reynolds numbers. When the animal swims in a fluid, two main forces are thought to play a role:

At low Reynolds number (Re~100), skin friction accounts for nearly all of the thrust and drag. For those animals which undulate at intermediate Reynolds number (Re~101), such as the Ascidian larvae, both skin friction and form force account for the production of drag and thrust. At high Reynolds number (Re~102), both skin friction and form force act to generate drag, but only form force produces thrust.

In animals that move without use of limbs, the most common feature of the locomotion is a rostral to caudal wave that travels down their body. However, this pattern can change based on the particular undulating animal, the environment, and the metric in which the animal is optimizing (i.e. speed, energy, etc.). The most common mode of motion is simple undulations in which lateral bending is propagated from head to tail.

Snakes can exhibit 5 different modes of terrestrial locomotion: (1) lateral undulation, (2) sidewinding, (3) concertina, (4) rectilinear, and (5) slide-pushing. Lateral undulation closely resembles the simple undulatory motion observed in many other animals such as in lizards, eels and fish, in which waves of lateral bending propagate down the snakes body.

The American eel typically moves in an aquatic environment, though it can also move on land for short periods of time. It is able to successfully move about in both environments by producing traveling waves of lateral undulations. However, differences between terrestrial and aquatic locomotor strategy suggest that the axial musculature is being activated differently, (see muscle activation patterns below). In terrestrial locomotion, all points along the body move on approximately the same path and, therefore, the lateral displacements along the length of the eel's body is approximately the same. However, in aquatic locomotion, different points along the body follow different paths with increasing lateral amplitude more posteriorly. In general, the amplitude of the lateral undulation and angle of intervertebral flexion is much greater during terrestrial locomotion than that of aquatic.


...
Wikipedia

...