*** Welcome to piglix ***

Ultrasonic testing


Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion.

Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors.

On May 27, 1940, U.S. researcher Dr. Floyd Firestone of the University of Michigan applies for a U.S. invention patent for the first practical ultrasonic testing method. The patent is granted on April 21, 1942 as U.S. Patent No. 2,280,226, titled "Flaw Detecting Device and Measuring Instrument". Extracts from the first two paragraphs of the patent for this entirely new nondestructive testing method succinctly describe the basics of such ultrasonic testing. "My invention pertains to a device for detecting the presence of inhomogeneities of density or elasticity in materials. For instance if a casting has a hole or a crack within it, my device allows the presence of the flaw to be detected and its position located, even though the flaw lies entirely within the casting and no portion of it extends out to the surface. ... The general principle of my device consists of sending high frequency vibrations into the part to be inspected, and the determination of the time intervals of arrival of the direct and reflected vibrations at one or more stations on the surface of the part."

James F. McNulty (U.S. radio engineer) of Automation Industries, Inc., then, in El Segundo, California, an early improver of the many foibles and limits of this and other nondestructive testing methods, teaches in further detail on ultrasonic testing in his U.S. Patent 3,260,105 (application filed December 21, 1962, granted July 12, 1966, titled “Ultrasonic Testing Apparatus and Method”) that “Basically ultrasonic testing is performed by applying to a piezoelectric crystal transducer periodic electrical pulses of ultrasonic frequency. The crystal vibrates at the ultrasonic frequency and is mechanically coupled to the surface of the specimen to be tested. This coupling may be effected by immersion of both the transducer and the specimen in a body of liquid or by actual contact through a thin film of liquid such as oil. The ultrasonic vibrations pass through the specimen and are reflected by any discontinuities which may be encountered. The echo pulses that are reflected are received by the same or by a different transducer and are converted into electrical signals which indicate the presence of the defect.” To characterize micro-structural features in the early stages of fatigue or creep damage, more advanced nonlinear ultrasonic tests should be employed. These nonlinear methods are based on the fact that an intensive ultrasonic wave is getting distorted as it faces micro damages in the material. The intensity of distortion is correlated with the level of damage. This intensity can be quantified by acoustic non-linearity parameter (β). β is related to first and second harmonic amplitudes. These amplitudes can be measured by harmonic decomposition of the ultrasonic signal through fast Fourier transformation or wavelet transformation.


...
Wikipedia

...