*** Welcome to piglix ***

Ultrasonic sensors


Ultrasonic transducers are divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

In a similar way to radar and sonar, ultrasonic transducers are used in systems which evaluate targets by interpreting the reflected signals. For example, by measuring the time between sending a signal and receiving an echo the distance of an object can be calculated. Passive ultrasonic sensors are basically microphones that detect ultrasonic noise that is present under certain conditions.

Ultrasonic probes and ultrasonic baths apply ultrasonic energy to agitate particles in a wide range of materials; See Sonication.

Ultrasound can be used for measuring wind speed and direction (anemometer), tank or channel fluid level, and speed through air or water. For measuring speed or direction, a device uses multiple detectors and calculates the speed from the relative distances to particulates in the air or water. To measure tank or channel level, the sensor measures the distance to the surface of the fluid. Further applications include: humidifiers, sonar, medical ultrasonography, burglar alarms, non-destructive testing and wireless charging.

Systems typically use a transducer which generates sound waves in the ultrasonic range, above 18 kHz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed.

The technology is limited by the shapes of surfaces and the density or consistency of the material. Foam, in particular, can distort surface level readings.

This technology, as well, can detect approaching objects and track their positions.

Ultrasonic transducers convert AC into ultrasound, as well as the reverse. Ultrasonics, typically refers to piezoelectric transducers or capacitive transducers. Piezoelectric crystals change size and shape when a voltage is applied; AC voltage makes them oscillate at the same frequency and produce ultrasonic sound. Capacitive transducers use electrostatic fields between a conductive diaphragm and a backing plate.


...
Wikipedia

...