*** Welcome to piglix ***

UPC and NPC


Usage Parameter Control (UPC) and Network Parameter Control (NPC) are functions that may be performed in a computer network. UPC may be performed at the input to a network "to protect network resources from malicious as well as unintentional misbehaviour". NPC is the same and done for the same reasons as UPC, but at the interface between two networks.

UPC and NPC may involve traffic shaping, where traffic is delayed until it conforms to the expected levels and timing, or traffic policing, where non-conforming traffic is either discarded immediately, or reduced in priority so that it may be discarded downstream in the network if it would cause or add to congestion.

The actions for UPC and NPC in the ATM protocol are defined in ITU-T Recommendation I.371 Traffic control and congestion control in B ISDN and the ATM Forum's User-Network Interface (UNI) Specification. These provide a conformance definition, using a form of the leaky bucket algorithm called the Generic Cell Rate Algorithm (GCRA), which specifies how cells are checked for conformance with a cell rate, or its reciprocal emission interval, and jitter tolerance: either a Cell Delay Variation tolerance (CDVt) for testing conformance to the Peak Cell Rate (PCR) or a Burst Tolerance or Maximum Burst Size (MBS) for testing conformance to the Sustainable Cell Rate (SCR).

UPC and NPC are normally performed on a per Virtual Channel (VC) or per Virtual Path (VP) basis, i.e. the intervals are measured between cells bearing the same Virtual Channel Identifier (VCI) and or Virtual Path Identifier (VPI). If the function is implemented at, e.g., a switch input, then because cells on the different VCs and VPs arrive sequentially, only a single implementation of the function is required. However, this single implementation must be able to access the parameters relating to a specific connection using the VCI and or VPI to address them. This is often done using Content-addressable memory (CAM), where the VCI and or VPI form the addressable content.


...
Wikipedia

...